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Diabolical points in the resonance spectra of vibrating smectic films
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Recent theoretical studies reveal the existence of so-called diabolical points in the energetic spectra of
rectangular quantum billiards with a pointlike scatterer. The wave equation that rules the drum-head oscilla-
tions of free-standing smectic films is similar to the two-dimensional Stihger equation, which makes
vibrating smectic films the analogues of appropriate quantum billiards. In this Rapid Communication we study
experimentally the diabolical points in a family of rectangular quantum billiards with an infinite scatterer via
the resonance spectra of appropriate smectic fil$$063-651X98)52010-7

PACS numbd(s): 05.45+b, 03.65.Bz, 68.15:¢e

The namediabolical pointrefers to a type of degeneracy pointed out theoretically and numerically the presence of
in the energy spectra of families of quantum systems withoutliabolical points in this family of billiards. These predictions
symmetry and for which no magnetic field is presghl. =~ were verified experimentally using the microwave cavities
They appear systematically in families that are characterizefl1].
by at least two parameters. The energy surfaces representedRecently a number of theoretical and numerical studies
in the space of these two parameters are connected only afas devoted to quantum billiards of rectangular shape with a
isolated points, and the energy surfaces in the neighborhogebintlike scatterer of strength situated in a point Xg,Yq)
of the connection point exhibit a conical geometry as a di{12—-16. Such a scatterer is described by a supplemental
abolo[2], which is responsible for the name of these inter-term to the Schidinger equatior(1)
sections(Fig. 1).

In particular, the degeneracies of this type appear in the _
spectra of so-calleduantum billiards[3]. The wave func- [ A+S(x=X0) 3y =Yo) J§(x.y) = Eg(x.y),
tions (x,y) of the quantum particle of the billiard as wgll as ¢|b0undary:o_ 3
the energy level& are given by the two-dimensional Schro

dinger equation . -
Once the aspect ratie=L,/L, of the billiard and the

scatterer strengtls are fixed, the behavior of the billiard
—AY(XY)=Ep(XY),  #lpoundan=0- (1) depends only on the coordinates of the scattergry()
which play the role of control parameters. Therefore, the
Equation(l) is ana]ogous to the wave equation that ru|esdiab0|ica| points should be the particular positions of the
vibration of a free-standing smectic filpd] characterized by ~scatterer that induce degeneracies of the particular energy

a constant two-dimensional densjty, and a tensiorr[5]in ~ levels. . _ .
the limit of small amplitudes [6], In [16] Cheon and Shigehara point out theoretically and

numerically the existence of the diabolical points in the fami-
(2f 12 lies of rectangular quantum billiards with a pointlike scat-
_ Paptem _ terer. They suggest to search these points along the nodal
—A(Az(x,y))= — Az(x,y), z =0. (2 ) ; o
(Az(x.y)) T (Y), Zlgame @ lines of unperturbed eigenstates of Ef). A pointlike scat-
terer placed on a nodal line does not affect the corresponding

Here z(x,y) andf are a stationary wave pattern and corre-

sponding resonance frequency of the film, respectively. A E
This makes the smectic films analogous to quantum bil-

liards in the same manner as acou$#if or microwave[8—

10] cavities. The wave patterrggx,y) are equivalent to the

wave functions of the corresponding quantum billiard

¥(x,y), and the resonance frequencieare related to the

square roots of the energy levdis Crossing of the energy

levels of a quantum billiard corresponds to crossing of the

resonance frequencies of the appropriate smectic film. There-

fore, investigation of the resonance spectra of appropriate

smectic films gives the experimental ground to the theoreti-

cal studies of quantum billiards. XO
To our knowledge, the existence of diabolical points in

quantum billiards was first analyzed by Berry and Wilkinson FIG. 1. Geometry of the energy surfaces in the space of two

for the family of triangular quantum billiard§l]. They parametersxy,yo) in the vicinity of a diabolical point.
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FIG. 3. Shape of the resonance surfaces in the vicinity of the
diabolical pointxo=0.72 cm. The fact that the crossing point is
situated on the mirror axig,=L,/2 permits us to examine only the
area on one side of this axis determinedyy=L,/2. The dimen-
sions of the explored area are 8.Z.5 mm.

12000

L, X L./2
coordinates Xy,Yo) are controlled with the accuracy of 0.01
FIG. 2. Spectrum of a smectic film of dimensions 1.15:1 cm asyym. The system is situatéd vacuoto avoid the influence of
a function of thex, coordinate of the fiber, whereas tiig coordi- the air surrounding the film.
nate of the fiber i4.,/2. the the presence of two cro;sings between A |aser beam reflected from the vibrating surface is then
the second and the third levelg=0.72 cm (asterisk and X0 gant 19 a photodiode connected to a lock-in amplifier which
=0.94. also delivers the excitation AC voltage. This method allows
us to detect the resonance spectra of the film but not the
energy level. However, the geometry of an adjacent statshape of vibrating surface.
wave function is different and therefore its energy level is Equation(2) possesses an analytical solution that gives
usually affected by the scatterer. If the perturbation is stronghe resonance spectra and corresponding wave patterns of an
enough, the lower energy level reaches the unperturbed onmperturbed vibrating rectangular film:
[17], which leads to a diabolical point.

The numerical results ifl6], performed for a family of 1 r [n? m?
rectangular billiards of an aspect ratie= 7r/e with a strong fnm=§ — (Ez + fz)
negative scattergd 8], display a set of diabolical points situ- Pap | Ex y
ated on the linexo=L,/2. In particular, the lowest energy )

levels are connected at two symmetric diabolical pdifh6.
Our aim here is to test experimentally the existence of
diabolical points in this type of quantum billiards via the
resonance spectra of vibrating smectic films. A scatterer is First we tested the frequency shift due to the fiber in the
realized by a fine fiber suspended perpendicular to the filmowest eigenmode with the intention of finding experimen-
surface. If the diameter of the fibdg, is small enough with tally the diabolical point described {i16]. For this purpose,
respect to the wavelength under consideration, it can be correquencies of the first and second eigenmodes are measured
sidered as a pointlike perturbation situated in a poinffor a set of the fiber positions situated on the lige=L,/2.
(X0.,Y0). The viscous drag imposes a node in this point in allWe find that the second resonance frequency remains con-
the wave patterns. This makes vibrating smectic film piercedtant, independent of the valueygf, which confirms experi-
by a fiber analogous to the rectangular quantum billiard oimentally the approximation of the fiber as a pointlike object
same dimensions with an infinite pointlike scatterer situatedor the area of frequencies under consideration. As expected,
at the same pointxg,Yo). the value of the first resonance frequency increases as the
The quantitative data shown here were obtained on #&ber approaches the center of the film. However, the value of
Sm-C mixture at ambient temperatu(€CE4 product from the resonance frequency shifted by the fiber never reaches
British Drug Hous¢ We use a frame of dimensions 1.15 the second resonance frequency.
X 1 cm whose aspect ratio is close #de taken for the nu- This fact shows the crucial importance of the value of the
merical calculations if16]. The film oscillation is driven by  scatterer strength. The diabolical point generated by a nega-
the electric field[6,5. A small fiber of diameterds,  tive scatterer disappears in the case of an infinite one. This is
=0.3 mm pierces the film surface in a point of coordinatesdue to the fact that the influence of a negative scatterer is
(Xo,Yo) With respect to a corner of the frame. The precisionmore important than the perturbation introduced by an infi-
of the reference point is of the order of 0.3 mm, whereas thaite perturbatior15].

. X . y
Z,m(X,y)=sin @n L_x sin| me—y .
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FIG. 4. (8—(h). Rearrangement of the station-
ary wave patterns of the third mode on a closed
loop including a crossing, which is labeled by the
black point. The circles show the location of the
fiber.

Let us note that the relative difference between the seconglituate the crossing point at=0.74 cm, which is in good
and third unperturbed eigenfrequencies of E4). for the  agreement with the experimental resulgs=0.72 cm.
chosen aspect ratio, /L, is much smaller than the distance  Let us note that even if the resonance spectra depends on
between the first and the second ones. This fact makes poghe film tension and the two-dimensional density of a given
sible the crossing of these resonance frequencies even in thigm, the value 4r2(p,pL2/7)f2 (6) is a function only of the
case of an infinite perturbation simulated by a fiber. In thisagpect ratid_, /L, .
way, the search method fropi6] requires us to explore the  Once the resonance frequency is found, the shape of vi-
nodal line of the third mode situated on the ligg=L,/2.  prating film is given by
The eventual location of these diabolical points is not ex-
plored in[16].

Figure 2 shows the resonance spectra of the smectic film 2(x y)ZAE
as a function of they-fiber coordinate when thg, position ’ am
is fixed toL /2. This set of fiber positions is situated also on
the nodal line of the fourth unperturbed vibrating film mode. . ) o
Accordingly, the experimental values of third and fourth fre- WhereA is the amplitude of vibration. o
quencies remain unchanging all over the intervakgptinder An important characteristic of diabolical points is the_ SO-
consideration. called geometric, or Berry, phase ef_fect. It means that_ln the

We observe effectively two intersections between the secSPace of control parameters on tracing a closed path, includ-
ond and third resonance frequencies situated at the point89 @ diabolical point, the wave function acquires an addi-
Xo=0.72 cm andk,=0.94 cm(Fig. 2. In order to determine tional geometric phase [20] (Fig. 1). This property is due

the nature of these crossings, we choose arbitrarily one dP the singularity of the energy surfaces at the diabolical
these intersection&o=0.72,y,=L,/2) for a more detailed point and it enables one to distinguish diabolical points from
analysis. ’ Y other types of crossing.

We have studied experimentally the behavior of the reso- AS the wave function of a quantum billiard is analogous
nance frequencies in the vicinity of the crossing to the stationary wave pattern of the corresponding smectic

=0.72 cm. The resonance surfaces are plotted in Fig9B film, the Berry phase test means that the wave pattern gains

This plot confirms the pointlike nature of the degeneracy2 supplemental phasewhen the fiber is transported around

The conical geometry of two surfaces is not well pro-& diabolical point. Since the experimental setup does not al-

nounced, which is due to the imperfection of measurement©W purely experimental realization of the test, it is possible

when the two resonance frequencies are close to one anoth, Verify it with the use of Eq(6). For this purpose, we have
The eigenfrequencigsin Eq. (2) are given by performed the numerical calculations of the film shape

z(x,y) for a set of fiber position situated on a closed path
around the crossing using the experimental values of the
1 resonance frequencid$xy,Yo).

472 (popl 2l 7)(F2—12) =0. ®) Figure 4 shows the results of a numerical test for the
highest sheet of the resonance surfaces of Fig. 3. The 900
lowest modes are taken into account. Even if the influence of

Here,z,, andf,, are given by Eq(4). the finite size of the fibef21] together with the measure-

Equation(5) is not well defined with a full unperturbed ments error induces a small shift of the nodal line from the
basis{z,}. However, the finiteness of the real fiber inducesfiber, the calculations give a decent representation of station-

a suitable cut-off of higher modes, which makes the problemary patterns. As expected, the film shape changes the sign on

well defined. The value of the cut-affis then determined by a closed loop around the crossing point, which confirms the

the size of the fiber with respect to the film dimensions so‘diabolical” character of this intersection.

that the wave vector of the cut-dff,ds,~am, a~1. In conclusion, we report here the experiments on the reso-

We performed the numerical estimations from EB) nance spectra of vibrating smectic films. We showed that
with the use of 300 lowest eigenmodes. For the 300th modgibrating smectic films are mathematically analogous to

Ko~ V4 X 300L,L, is of the order of 5.7 mmt, so that quantum billiards of appropriate shape, and a very small fi-

ksodsi= /2. This means that the real fiber behaves as der on the film surface is equivalent to an infinite pointlike

pointlike object for about 300 lowest modes. The simulationsscatterer in the corresponding quantum billiard. A compari-

Zmn(X0,Y0)
S ZanlXy), ®)
nm

%} Zﬁm(XO-yO)
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son between the recent theoretical studies and our expetihe intersections confirms that these intersections are diaboli-
ments shows the crucial influence of the scatterer strength oggl points.

the existence of diabolical points. We point out experimen- The authors are grateful to P. Walker, M. Pascaud, G.
tally the location of two pointlike intersections between theMontambaux, and M. Gabay for fruitful discussions. It is a
second and the third energy levels. A detailed study of one gbleasure to thank B. Pansu and C. Even for helpful remarks.
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