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Diabolical points in the resonance spectra of vibrating smectic films
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~Received 2 February 1998!

Recent theoretical studies reveal the existence of so-called diabolical points in the energetic spectra of
rectangular quantum billiards with a pointlike scatterer. The wave equation that rules the drum-head oscilla-
tions of free-standing smectic films is similar to the two-dimensional Schro¨dinger equation, which makes
vibrating smectic films the analogues of appropriate quantum billiards. In this Rapid Communication we study
experimentally the diabolical points in a family of rectangular quantum billiards with an infinite scatterer via
the resonance spectra of appropriate smectic films.@S1063-651X~98!52010-7#

PACS number~s!: 05.45.1b, 03.65.Bz, 68.15.1e
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The namediabolical point refers to a type of degenerac
in the energy spectra of families of quantum systems with
symmetry and for which no magnetic field is present@1#.
They appear systematically in families that are character
by at least two parameters. The energy surfaces represe
in the space of these two parameters are connected on
isolated points, and the energy surfaces in the neighborh
of the connection point exhibit a conical geometry as a
abolo @2#, which is responsible for the name of these int
sections~Fig. 1!.

In particular, the degeneracies of this type appear in
spectra of so-calledquantum billiards@3#. The wave func-
tionsc(x,y) of the quantum particle of the billiard as well a
the energy levelsE are given by the two-dimensional Schr¨-
dinger equation

2Dc~x,y!5Ec~x,y!, cuboundary50. ~1!

Equation~1! is analogous to the wave equation that ru
vibration of a free-standing smectic film@4# characterized by
a constant two-dimensional densityr2D and a tensiont @5# in
the limit of small amplitudesA @6#,

2D„Az~x,y!…5
r2D~2p f !2

t
Az~x,y!, zu frame50. ~2!

Here z(x,y) and f are a stationary wave pattern and cor
sponding resonance frequency of the film, respectively.

This makes the smectic films analogous to quantum
liards in the same manner as acoustic@7# or microwave@8–
10# cavities. The wave patternsz(x,y) are equivalent to the
wave functions of the corresponding quantum billia
c(x,y), and the resonance frequenciesf are related to the
square roots of the energy levelsE. Crossing of the energy
levels of a quantum billiard corresponds to crossing of
resonance frequencies of the appropriate smectic film. Th
fore, investigation of the resonance spectra of appropr
smectic films gives the experimental ground to the theor
cal studies of quantum billiards.

To our knowledge, the existence of diabolical points
quantum billiards was first analyzed by Berry and Wilkins
for the family of triangular quantum billiards@1#. They
PRE 581063-651X/98/58~4!/4076~4!/$15.00
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pointed out theoretically and numerically the presence
diabolical points in this family of billiards. These prediction
were verified experimentally using the microwave cavit
@11#.

Recently a number of theoretical and numerical stud
was devoted to quantum billiards of rectangular shape wi
pointlike scatterer of strengths situated in a point (x0 ,y0)
@12–16#. Such a scatterer is described by a suppleme
term to the Schro¨dinger equation~1!

@2D1sd~x2x0!d~y2y0!#c~x,y!5Ec~x,y!,

cuboundary50. ~3!

Once the aspect ratioa5Ly /Lx of the billiard and the
scatterer strengths are fixed, the behavior of the billiard
depends only on the coordinates of the scatterer (x0 ,y0)
which play the role of control parameters. Therefore,
diabolical points should be the particular positions of t
scatterer that induce degeneracies of the particular en
levels.

In @16# Cheon and Shigehara point out theoretically a
numerically the existence of the diabolical points in the fam
lies of rectangular quantum billiards with a pointlike sca
terer. They suggest to search these points along the n
lines of unperturbed eigenstates of Eq.~1!. A pointlike scat-
terer placed on a nodal line does not affect the correspon

FIG. 1. Geometry of the energy surfaces in the space of
parameters (x0 ,y0) in the vicinity of a diabolical point.
R4076 © 1998 The American Physical Society
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energy level. However, the geometry of an adjacent s
wave function is different and therefore its energy level
usually affected by the scatterer. If the perturbation is stro
enough, the lower energy level reaches the unperturbed
@17#, which leads to a diabolical point.

The numerical results in@16#, performed for a family of
rectangular billiards of an aspect ratioa'p/e with a strong
negative scatterer@18#, display a set of diabolical points situ
ated on the linex05Lx/2. In particular, the lowest energ
levels are connected at two symmetric diabolical points@16#.

Our aim here is to test experimentally the existence
diabolical points in this type of quantum billiards via th
resonance spectra of vibrating smectic films. A scattere
realized by a fine fiber suspended perpendicular to the
surface. If the diameter of the fiberdfib is small enough with
respect to the wavelength under consideration, it can be
sidered as a pointlike perturbation situated in a po
(x0 ,y0). The viscous drag imposes a node in this point in
the wave patterns. This makes vibrating smectic film pier
by a fiber analogous to the rectangular quantum billiard
same dimensions with an infinite pointlike scatterer situa
at the same point (x0 ,y0).

The quantitative data shown here were obtained o
Sm-C mixture at ambient temperature~SCE4 product from
British Drug House!. We use a frame of dimensions 1.1
31 cm whose aspect ratio is close top/e taken for the nu-
merical calculations in@16#. The film oscillation is driven by
the electric field @6,5#. A small fiber of diameterdfib
50.3 mm pierces the film surface in a point of coordina
(x0 ,y0) with respect to a corner of the frame. The precisi
of the reference point is of the order of 0.3 mm, whereas

FIG. 2. Spectrum of a smectic film of dimensions 1.15:1 cm
a function of thex0 coordinate of the fiber, whereas they0 coordi-
nate of the fiber isLy/2. Note the presence of two crossings betwe
the second and the third levelsx050.72 cm ~asterisk! and x0

50.94.
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coordinates (x0 ,y0) are controlled with the accuracy of 0.0
mm. The system is situatedin vacuoto avoid the influence of
the air surrounding the film.

A laser beam reflected from the vibrating surface is th
sent to a photodiode connected to a lock-in amplifier wh
also delivers the excitation AC voltage. This method allo
us to detect the resonance spectra of the film but not
shape of vibrating surface.

Equation ~2! possesses an analytical solution that giv
the resonance spectra and corresponding wave patterns
unperturbed vibrating rectangular film:

f nm5
1

2
A t

r2D
S n2

Lx
2 1

m2

Ly
2 D ,

~4!

znm~x,y!5sinS pn
x

Lx
D sinS pm

y

Ly
D .

First we tested the frequency shift due to the fiber in
lowest eigenmode with the intention of finding experime
tally the diabolical point described in@16#. For this purpose,
frequencies of the first and second eigenmodes are meas
for a set of the fiber positions situated on the linex05Lx/2.
We find that the second resonance frequency remains
stant, independent of the value ofy0 , which confirms experi-
mentally the approximation of the fiber as a pointlike obje
for the area of frequencies under consideration. As expec
the value of the first resonance frequency increases as
fiber approaches the center of the film. However, the value
the resonance frequency shifted by the fiber never reac
the second resonance frequency.

This fact shows the crucial importance of the value of t
scatterer strength. The diabolical point generated by a ne
tive scatterer disappears in the case of an infinite one. Th
due to the fact that the influence of a negative scattere
more important than the perturbation introduced by an in
nite perturbation@15#.

s

n

FIG. 3. Shape of the resonance surfaces in the vicinity of
diabolical pointx050.72 cm. The fact that the crossing point
situated on the mirror axisy05Ly/2 permits us to examine only th
area on one side of this axis determined byy0>Ly/2. The dimen-
sions of the explored area are 0.731.5 mm.
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FIG. 4. ~a!–~h!. Rearrangement of the station
ary wave patterns of the third mode on a clos
loop including a crossing, which is labeled by th
black point. The circles show the location of th
fiber.
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Let us note that the relative difference between the sec
and third unperturbed eigenfrequencies of Eq.~4! for the
chosen aspect ratioLy /Lx is much smaller than the distanc
between the first and the second ones. This fact makes
sible the crossing of these resonance frequencies even i
case of an infinite perturbation simulated by a fiber. In t
way, the search method from@16# requires us to explore th
nodal line of the third mode situated on the liney05Ly/2.
The eventual location of these diabolical points is not
plored in @16#.

Figure 2 shows the resonance spectra of the smectic
as a function of thex0-fiber coordinate when they0 position
is fixed toLy/2. This set of fiber positions is situated also
the nodal line of the fourth unperturbed vibrating film mod
Accordingly, the experimental values of third and fourth fr
quencies remain unchanging all over the interval ofx0 under
consideration.

We observe effectively two intersections between the s
ond and third resonance frequencies situated at the po
x050.72 cm andx050.94 cm~Fig. 2!. In order to determine
the nature of these crossings, we choose arbitrarily on
these intersections~x050.72, y05Ly/2! for a more detailed
analysis.

We have studied experimentally the behavior of the re
nance frequencies in the vicinity of the crossingx0
50.72 cm. The resonance surfaces are plotted in Fig. 3@19#.
This plot confirms the pointlike nature of the degenera
The conical geometry of two surfaces is not well pr
nounced, which is due to the imperfection of measureme
when the two resonance frequencies are close to one ano

The eigenfrequenciesf in Eq. ~2! are given by

(
n,m

znm
2 ~x0 ,y0!

1

4p2~r2DLx
2/t!~ f 22 f m

2 !
50. ~5!

Here,znm and f nm are given by Eq.~4!.
Equation~5! is not well defined with a full unperturbe

basis$znm%. However, the finiteness of the real fiber induc
a suitable cut-off of higher modes, which makes the probl
well defined. The value of the cut-offn is then determined by
the size of the fiber with respect to the film dimensions
that the wave vector of the cut-offkndfib'ap, a'1.

We performed the numerical estimations from Eq.~5!
with the use of 300 lowest eigenmodes. For the 300th m
k300'A4p3300/LxLy is of the order of 5.7 mm21, so that
k300dfib'p/2. This means that the real fiber behaves a
pointlike object for about 300 lowest modes. The simulatio
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situate the crossing point atx050.74 cm, which is in good
agreement with the experimental resultsx050.72 cm.

Let us note that even if the resonance spectra depend
the film tension and the two-dimensional density of a giv
film, the value 4p2(r2DLx

2/t) f 2 ~6! is a function only of the
aspect ratioLx /Ly .

Once the resonance frequency is found, the shape o
brating film is given by

z~x,y!5A(
n,m

zmn~x0 ,y0!

f 22 f nm
2 znm~x,y!, ~6!

whereA is the amplitude of vibration.
An important characteristic of diabolical points is the s

called geometric, or Berry, phase effect. It means that in
space of control parameters on tracing a closed path, inc
ing a diabolical point, the wave function acquires an ad
tional geometric phasep @20# ~Fig. 1!. This property is due
to the singularity of the energy surfaces at the diaboli
point and it enables one to distinguish diabolical points fro
other types of crossing.

As the wave function of a quantum billiard is analogo
to the stationary wave pattern of the corresponding sme
film, the Berry phase test means that the wave pattern g
a supplemental phasep when the fiber is transported aroun
a diabolical point. Since the experimental setup does not
low purely experimental realization of the test, it is possib
to verify it with the use of Eq.~6!. For this purpose, we hav
performed the numerical calculations of the film sha
z(x,y) for a set of fiber position situated on a closed pa
around the crossing using the experimental values of
resonance frequenciesf (x0 ,y0).

Figure 4 shows the results of a numerical test for
highest sheet of the resonance surfaces of Fig. 3. The
lowest modes are taken into account. Even if the influence
the finite size of the fiber@21# together with the measure
ments error induces a small shift of the nodal line from t
fiber, the calculations give a decent representation of stat
ary patterns. As expected, the film shape changes the sig
a closed loop around the crossing point, which confirms
‘‘diabolical’’ character of this intersection.

In conclusion, we report here the experiments on the re
nance spectra of vibrating smectic films. We showed t
vibrating smectic films are mathematically analogous
quantum billiards of appropriate shape, and a very smal
ber on the film surface is equivalent to an infinite pointli
scatterer in the corresponding quantum billiard. A compa
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son between the recent theoretical studies and our ex
ments shows the crucial influence of the scatterer strengt
the existence of diabolical points. We point out experime
tally the location of two pointlike intersections between t
second and the third energy levels. A detailed study of on
A
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the intersections confirms that these intersections are dia
cal points.

The authors are grateful to P. Walker, M. Pascaud,
Montambaux, and M. Gabay for fruitful discussions. It is
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